3D zobrazení prostřednictvím vlákna tenkého jako vlas

3D zobrazení prostřednictvím vlákna tenkého jako vlas
Fotografie: unsplash.com
  • Vědcům se podařilo vyvinout nový endoskop, který dokáže 3D zobrazení přes vlákno o průměru lidského vlasu
  • Na vývoji se podílel i český vědec a spoluautor článku o holografickém zobrazení Tomáš Čižmár
  • Metoda je založena na prostorovém tvarovaní laserových svazků
  • Vědci teď musí ještě vyřešit některé technologické parametry, aby svůj výzkum mohli úspěšně uvést do praxe

Vědcům se podařilo vyvinout nový endoskop, který dokáže 3D zobrazení přes vlákno o průměru lidského vlasu. Přístroj by se v budoucnu dal využít například při monitorování komplexních výrobních procesů, zjednodušení autonomní řízení dopravních prostředků nebo by mohl způsobit revoluci ve zdravotnictví. Stojí za ním mezinárodní vědecký tým, jeho součástí je Tomáš Čižmár z Ústavu přístrojové techniky AV ČR. Český vědec je také spoluautorem článku o holografickém zobrazení, který nedávno vyšel v časopise Science.


Metoda je založena na prostorovém tvarovaní laserových svazků, které po průchodu multimodovými optickými vlákny vytvářejí přesná prostorová rozložení světelných polí, sloužících k osvětlení objektu. Nyní se ji ve spolupráci s mezinárodním týmem vědců podařilo rozšířit o možnost 3D zobrazení. „Principem je přesná detekce doby letu fotonů. S rychlými a citlivými detektory jsme takto schopni měřit vzdálenost objektu s přesností na dva milimetry,“ říká Tomáš Čižmár, který se výzkumu zobrazování optickými vlákny věnuje už deset let a je součástí mezinárodního vědeckého týmu, kde s odborníky z Ústavu přístrojové techniky AV ČR spolupracují vědci z Glasgowské univerzity, Fraunhoferova centra aplikované fotoniky v Glasgow, Exeterské univerzity a Leibnitzova ústavu fotoniky v Jeně.

Světlo procházející multimodovým optickým vláknem je náhodně kódováno. „V praxi to znamená, že když do vlákna naváži nějaké světelné pole, na výstupu z vlákna získám prostorově promíchaný signál, který se původnímu nebude jakkoli podobat. Proces je nicméně deterministický a s využitím současných technologií lze přesně monitorovat a využít k zobrazování,“ vysvětluje Tomáš Čižmár.

Pro 3D zobrazení vědci využili metody LiDAR vyvinuté v Glasgow, kde se současně měří doba letu fotonů od zobrazovacího systému k objektu a zpět. Doba letu je přirozeně delší od objektů více vzdálených od optického systému. Vzdálenost objektu je tak možné měřit až s milimetrovou přesností.

Vědci teď musí ještě vyřešit některé technologické parametry, aby svůj výzkum mohli úspěšně uvést do praxe. „Nejvýznamnějším technologickým problémem zůstává umožnění zobrazování při ohybu vlákna. Pokud je vlákno ohýbáno či krouceno, dochází ke změnám v šíření světla skrze vlákno a obrazová informace se rychle ztrácí. V našem dosahu je však několik možných řešení, která se chystáme zveřejnit v příštím roce,“ dodává Čižmár.

Diskuze ke článku
V diskuzi zatím nejsou žádné příspěvky. Přidejte svůj názor jako první.
Přidat názor

Nejživější diskuze